Antioxidant activity of Quercetin 3-O-alpha-L-arabinopyranoside isolated from *Hibiscus vitifolius* (Linn.) in mercury chloride induced toxicity

Sasikumar Dhanarasu¹, Mathi Selvam¹, and Nouh M H. Aljarari²

¹ Department of Biochemistry, College of Medicine, University of Ha’il, Kingdom of Saudi Arabia.
² Department of Pharmacology, Medicine Faculty, Benghazi University, P.O.Box: 7806, Benghazi, Libya.

ABSTRACT

The fresh flowers of *Hibiscus vitifolius* Linn. were screened to determine antioxidant activity. A methanol extract of flower was prepared and partitioned sequentially with petrol, ether and ethyl acetate. The active compounds were identified by UV, ¹H NMR (Proton Nuclear Magnetic Resonance) and ¹³C NMR (Carbon-13 Nuclear Magnetic Resonance) as quercetin and quercetin 3-0-arabinopyranoside. The antioxidant activity was also studied in mercury chloride (HgCl₂) toxicity through biochemical parameters such as SOD, CAT, GSH, GPx, AST, LPO, vitamin C, vitamin E and urea. Quercetin 3-0-arabinopyranoside treated rats showed decrease in lipid peroxidation. Statistically significant increased in enzymes compared to HgCl₂ induced group was observed. Which indicates that quercetin 3-0-arabinopyranoside isolated from the flowers of *Hibiscus vitifolius* act as a potent antioxidant.

Key Words:

Corresponding Author: Nouh M H. Aljarari Email: noahjrarai2001@yahoo.com

1. INTRODUCTION

Hibiscus vitifolius Linn. (Manjal Thutti) belongs to the Malvacea (Hooker JD 1954). The flowers of this plant are yellow with a purple base. The yellow petals of *Hibiscus vitifolius* are rich in flavonols with high tinctorial properties (Matthews 1947). Isolation of gossypin and quercetin have been reported earlier from the flowers (Roa and Seshadri 1935).

Free radicals are continuously produced in our body. However, these are vigorously controlled by antioxidants. When this precarious balance is broken, in favor of free radicals, it causes an oxidative stress. This oxidative stress can attack lipids, which constitute the cellular membranes, bases of the DNA, and amino acids of the proteins. Free radicals scavengers (antioxidants) are key elements in the defense system, which the body uses in order to neutralize the activity of these dangerous and, over the long term, free radical enemies (Barry 1991).

Mercury is a widespread environmental and industrial pollutant, which induces several alteration in the tissue of both animals and men (Lund et al 1993; Mahboob et al 2001; Staley and Kappas 1982). Various mechanisms, including lipid peroxidation have been proposed for the biological toxicity of HgCl₂ and it has been demonstrated that lipid peroxidation occurs in the liver, kidney and other tissues of the rats and mice following parenteral administration of mercuric chloride (Huang et al 1996 and Mahboob et al 2001). In the present study, the antioxidant potential of quercetin 3-0-arabino pyranoside isolated from the flowers of *Hibiscus vitifolius* and oxidative stress HgCl₂ has been investigated.

2. MATERIALS AND METHODS

Isolation of flavone

Fresh flowers (1 kg) of *Hibiscus vitifolius* were collected from the banks of Cauvery in Kumbakonam, Tamil Nadu, India. The yellow portion of the petals along were carefully separated and extracted with boiling methanol (85%) under reflux. The alcoholic extract was concentrated in vacuum and the aqueous concentrated successively fractionated with petrol (60-80°C), peroxide free diethyl ether and ethyl acetate. The petrol fraction did not yield any isolated material. The diethyl ether fraction yield aglycone and ethyl acetate fraction yield the glycoside. This active compounds were identified by UV and ¹H and ¹³C NMR as quercetin and quercetin 3-0-arabinopyranoside. The ¹H and ¹³C NMR values of aglycone and glycoside were appended in table 1 and table 2.

Experimental Design
Adult male albino wistar rats weighing 120-180gm were obtained from the Indian Institute of Science, Bangalore. The animals were housed in polypropylene cages and maintained under standard conditions (12 h light and dark cycles, at 25±3°C and 35-60 % humidity). Standard pelleted feed and tap water were provided ad libitum.

Animals were grouped as follows and each group contains 6 rats. Group I: Normal animals received standard feed and water ad libitum. No other treatment. Group II: received single intraperitoneal injection of mercury chloride (5 mg/kg.bwt). Group III: received single intraperitoneal injection of mercury chloride (5 mg/kg,bwt) as like group II then by oral administration of quercetin (500mg/kg bwt) in aqueous suspension. Group IV: animals received oral administration of quercetin (500mg/kg bwt) in aqueous suspension alone.

The body weight of the animals was recorded throughout the experimental period starting from Day 0. After the experimental regimen, the rats were fasted overnight and were sacrificed by cervical dislocation under light ether anesthesia, and the blood was collected on decapitation. Serum was separated by centrifugation (20 min at 2000 rpm) and stored at –20°C for biochemical assays. Plasma was separated from heparinized blood by centrifugation at 1000g for 15 min.

Biochemical estimations

Biochemical estimations were carried out in blood samples of normal and experimental animals in each group. LPO (Beuge and Aust, 1978) Glutathione (Moron., 1979), superoxide dismutase (SOD) (Kakkar et al., 1984), catalase (Beers and Sizer, 1952), Glutathione peroxidase (Rotruk et al., 1973), Aspartate transaminase (Reitman and Frankel, 1957), Vitamin E (Baker et al., 1980) and Vitamin C (Omaye et al., 1979) were estimated.

Statistical analysis

Statistical analysis of data were done using students ‘t’ test, and data were expressed as means ± SD. The values at p<0.05 were considered statistically significant.

3. RESULTS AND DISCUSSION

Isolation of Flavone

The 1H and 13C NMR of the aglycone appended in Table 1 and 2. It was identified as quercetin and same was confirmed by comparing with an authentic sample of quercetin from physalis minma. (Sethuraman and Sulochana, 1988). In addition the 1H and 13C NMR of the glycoside are appended in Table 1 and 2. It was identified as quercetin 3-0-arabinopyranoside (Gujaverin) and confirmed by with an authentic sample isolated from Psidius guaijava (Khadam and Mohammed, 1958).

Antioxidant activity

The levels of antioxidant enzymes in the serum of the control and experimental groups are shown in table 3. It is now generally accepted that lipid peroxidation and its product play an important role in liver, kidney, heart and brain toxicity (Lakshmi et al 2005). In this context a marked increase in the concentration of LPO was observed in mercury chloride intoxicated rats when compared to control rats, which is in agreement with the previous studies, where lipid peroxidation products were increased from 40% to 12% above basal values (Company et al 2004). Administration of quercetin 3-0-arabinopyranoside significantly decreased the level of LPO in HgCl2 intoxicated rats as compared to control rats (Sener et al (2007).

Mercury is a transition metal and has high efficient with GSH and causes the irreversible excretion of up to two GSH tri peptide (Zalups and Lash, 1996). The present study indicated the administration of quercetin 3-0-arabino pyranoside to HgCl2 intoxicated rats, significantly elevated GSH content and decline lipid peroxidation and reduces the mercury toxicity and reduces liver damage. Activities of SOD and CAT to scavenge superoxide ions and hydroxyl ions respectively were significantly lower in HgCl2 intoxicated rats as compared with control rats. Lowered activities of SOD and CAT will result in the accumulation of these highly reactive free radicals leading to deleterious effects such as loss of cell membrane integrity and membrane function (Reedy and Lokesh, 1992). The observed restoration of the SOD and CAT activities in the study on treatment with quercetin 3-0-arabinopyranoside may be due to the direct stimulatory effect of quercetin 3-0-arabinopyranoside on SOD and CAT.

In the present study, decreased activity of GPx suggests an increased production of H2O2 and decreased level of GSH in HgCl2 intoxicated rats. Administration of quercetin 3-0-arabinopyranoside to HgCl2 intoxicated rats restored the activity of GPX. The restored activity of GPX may increase the level of GSH in HgCl2 intoxicated rat. In addition, significant increase was shown in the activities of liver markers (AST) in the serum of HgCl2 intoxicated rats, which is consistant with earlier reports (Sener et al., 2007). Administration of quercetin 3-0-arabinopyranoside was significantly prevented the HgCl2 induced elevation in the levels of diagnostic marker enzymes in serum, indicating the cytoprotective activity of quercetin 3-0-arabinopyranoside in Group III rats.
Serum levels of Vitamin E and Vitamin C in our study were significantly reduced in HgCl₂ intoxicated rats (Group II) than in the experimental control rats (Group I). Supplementation with quercetin 3-O-arabinopyranoside to HgCl₂ intoxicated rats resulted in near normal serum levels of Vitamin E and Vitamin C (p<0.001).

Animals treated with quercetin 3-O-arabinopyranoside isolated from Hibiscus vitifolius retained the activity of the antioxidant enzymes to near normal levels. The above findings showed that quercetin 3-O-arabinopyranoside isolated from the fresh flowers of Hibiscus vitifolius possess significant antioxidant activity.

Table 1: ^1^H NMR spectral Data of the flavone complex

<table>
<thead>
<tr>
<th>Compound</th>
<th>-NCH₂ (s)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aglycone</td>
<td>3.51</td>
<td>7.78 (d)</td>
<td>7.41 (dd)</td>
<td>7.58 (d)</td>
</tr>
<tr>
<td>Glycoside</td>
<td>3.56</td>
<td>7.93 (d)</td>
<td>7.23 (dd)</td>
<td>7.63 (d)</td>
</tr>
</tbody>
</table>

Table 2: ^13^C NMR spectral Data of the flavone complex

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical Shift Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>C=O</td>
</tr>
<tr>
<td>Aglycone</td>
<td>176.71</td>
</tr>
<tr>
<td>Glycoside</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Effect of quercetin 3-O-arabinopyranoside on the antioxidant enzymes in normal and experimental rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO (mg/dl)</td>
<td>5.7 ± 1.6</td>
<td>11.5 ± 1.2<sup>u</sup></td>
<td>8.5 ± 1.10*</td>
<td>5.87 ± 1.06*</td>
</tr>
<tr>
<td>SOD (u/dl)</td>
<td>0.41 ± 0.07</td>
<td>0.21 ± 0.04<sup>u</sup></td>
<td>0.29 ± 0.06*</td>
<td>0.43 ± 0.08*</td>
</tr>
<tr>
<td>CAT (u/dl)</td>
<td>56.8 ± 6.5</td>
<td>36.8 ± 5.9<sup>u</sup></td>
<td>52.5 ± 5.8*</td>
<td>57.21 ± 5.9*</td>
</tr>
<tr>
<td>GPx (u/dl)</td>
<td>8.2 ± 1.6</td>
<td>5.3 ± 1.9<sup>u</sup></td>
<td>8.5 ± 2.4*</td>
<td>8.12 ± 1.8*</td>
</tr>
<tr>
<td>GSH (mg/dl)</td>
<td>48.56 ± 9.2</td>
<td>37.6 ± 9.12<sup>u</sup></td>
<td>48.98 ± 6.2*</td>
<td>47.58 ± 8.12*</td>
</tr>
<tr>
<td>Vitamin C (mg/dl)</td>
<td>56.5 ± 4.1</td>
<td>34.7 ± 4.09<sup>u</sup></td>
<td>42.15 ± 5.6*</td>
<td>57.40 ± 3.91*</td>
</tr>
<tr>
<td>Vitamin E (mg/dl)</td>
<td>3.00 ± 0.17</td>
<td>2.30 ± 0.24<sup>u</sup></td>
<td>3.00 ± 0.15*</td>
<td>2.97 ± 0.18*</td>
</tr>
</tbody>
</table>

Values expressed as mean ±SD
* Significantly different from group II (p<0.05)
Significantly different from group I (p<0.05)

4. REFERENCES

